Fliegender und fahrender Soft-Roboter ändert seine Form durch flüssiges Metall

Der Roboter T-1000 aus "Terminator 2" ändert seine Form beliebig durch flüssiges Metall. So weit ist die Forschung noch nicht, zeigt aber Möglichkeiten auf.

In Pocket speichern vorlesen Druckansicht 20 Kommentare lesen

(Bild: Virginia Tech (Screenshot))

Lesezeit: 4 Min.

Ein Team von Wissenschaftler des Virginia Polytechnic Institute and State University (kurz: Virgina Tech) haben einen Soft-Roboter entwickelt, der sich von einem Fahrzeug in eine Drohne wandeln kann. Die Forscher setzen dabei auf eine Formänderung auf Materialebene, verzichten also auf Motoren und eine entsprechende Mechanik. Stattdessen benutzen sie eine Kombination aus Elastomer, Metall und Temperatur, um eine Formwandlung zu erzielen.

In ihrem im Fachmagazin Science Robotics veröffentlichen Paper "Shape morphing mechanical metamaterials through reversible plasticity" beschreibt das Team rund um den Maschinenbau-Professor Michael Bartlett seine Forschungsarbeit anhand einer multifunktionalen autonom formwandelnden Drohne. Ziel des Projektes war es, ein Material zu entwickeln, dass die Form verändern, diese Form beibehalten und wieder in die Ausgangsform zurückkehren kann, erklärt Bartlett. Dabei sollte das Material aber auch so geschaffen sein, dass eine Formwandlung über viele Zyklen hinweg möglich ist, ohne dass das Material ermüdet. "Eine der Herausforderungen bestand darin, ein Material zu entwickeln, das weich genug ist, um seine Form dramatisch zu verändern, und gleichzeitig steif genug, um anpassungsfähige Maschinen zu schaffen, die verschiedene Funktionen ausführen können", umschreibt Bartlett das Ausgangsproblem der Wissenschaftler.

Um dies zu realisieren, entwickelte das Wissenschaftsteam zunächst eine Struktur auf Basis der japanischen Papierfalt- und Schneidekunst Kirigami, um die Festigkeit einer aus regelmäßigen geometrischen Muster bestehenden Struktur zu testen, die aus Kautschuk und Verbundstoffen besteht.

Darauf aufbauend entwickelten sie ein Endoskelett aus einer Legierung mit niedrigem Schmelzpunkt, Low Melting Point Alloy (LMPA), das die Forscher in eine Gummihaut integrierten. Dadurch gelang es ihnen, mehrere grundlegende Probleme bei mehrfacher Materialverformung von Metall zu umgehen: Wird Metall zu stark gebogen wird, bleibt es herkömmlicherweise dauerhaft verbogen, reißt oder ist in eine Form gebracht, die unbrauchbar ist. Durch die Kombination einer speziellen Legierung und der Einbettung in ein Elastomer konnten die Forscher dies verhindern. Sie erhielten so ein Material, das sich verformen lässt und gleichzeitig stabil genug ist, um gewissen Belastungen standzuhalten.

Um die Verformung zu erreichen und das Material wieder in seine ursprüngliche Form zurückbringen zu können, ergänzte das Forscherteam das Endoskelett um ein Netzwerk aus flexiblen Heizelementen, die sich rankenartig um die LMPA-Struktur legen. Bei einer Temperatur von 60 Grad Celsius schmilzt das Metall, wird aber durch das umgebene Elastomer an seinem Platz gehalten und nach der Verformung durch reversible Plastizität wieder in seine ursprüngliche Form gebracht. Das klappt deshalb, weil die durch Kirigami inspirierten Einschnitte im Exoskelett es ermöglichen, es schnell in die gewünschte Form zu bringen und wieder in die Ausgangsform zu transformieren. Ist das Metall abgekühlt, ist die ursprüngliche Festigkeit wieder gegeben.

Empfohlener redaktioneller Inhalt

Mit Ihrer Zustimmmung wird hier ein externes YouTube-Video (Google Ireland Limited) geladen.

Ich bin damit einverstanden, dass mir externe Inhalte angezeigt werden. Damit können personenbezogene Daten an Drittplattformen (Google Ireland Limited) übermittelt werden. Mehr dazu in unserer Datenschutzerklärung.

Nach Angaben der Forscher konnten sie das Material auch in komplexe Formen bringen. Sie stellten fest, dass das Material durch das Einwirken externer Kräfte in weniger als einer Zehntelsekunde seine Form änderte. Brach das Metallmaterial des Endoskeletts, konnte es durch Schmelzen und Neuformung mehrfach geheilt werden.

Basierend auf ihrer Forschungsarbeit bauten die Forscher einen Multikopter-artigen Soft-Roboter mit einem Grundkörper aus dem entwickelten Material. Der Körper lässt sich dabei so verformen, dass er eingeklappt werden kann. Dann befinden sich vier Räder auf dem Boden, sodass der Roboter auch fährt. Im ursprünglichen Zustand des Grundkörpers funktioniert er wie eine Drohne.

Die Forscher sehen ihre Forschung jedoch noch am Anfang. Die bisherigen Ergebnisse würden aber zeigen, welche Möglichkeiten das Material für multifunktionale Roboter biete. "Diese Verbundwerkstoffe sind stark genug, um den Kräften von Motoren oder Antriebssystemen standzuhalten, lassen sich aber auch leicht formen, wodurch sich die Maschinen an ihre Umgebung anpassen können", sagt Edward J. Barron, einer der beteiligten Wissenschaftler am Projekt.

Das Team sieht durch den Einsatz von Verbundstoffen eine große Chance für die Soft-Robotik. Damit ließen sich Maschinen schaffen, die mehrere Funktionen ausführen und sich nach einer Beschädigung selbst heilen können.

(olb)